GPU Kernel Information Aggregated by Name
kernel_name | kernel_count | kernel_duration (us) | model_duration_percentage | kernel_flops | kernel_dram_read_bytes | kernel_dram_write_bytes | kernel_achieved_occupancy (%) | kernel_arithmetic_intensity (flops/byte) | kernel_arithmetic_throughput (GFlops) | kernel_memory_bound |
---|
kernel_name | kernel_count | kernel_duration (us) | model_duration_percentage | kernel_flops | kernel_dram_read_bytes | kernel_dram_write_bytes | kernel_achieved_occupancy (%) | kernel_arithmetic_intensity (flops/byte) | kernel_arithmetic_throughput (GFlops) | kernel_memory_bound |
---|---|---|---|---|---|---|---|---|---|---|
cudnn::maxwell::gemm::computeOffsetsKernel(cudnn::maxwell::gemm::ComputeOffsetsParams) | 35 | 76.00 | 0.22 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
maxwell_scudnn_128x32_relu_interior_nn | 9 | 841.00 | 2.46 | 1393852416 | 0.00 | 0.00 | 0.00 | 0.00 | 1657.38 | true |
maxwell_scudnn_128x64_relu_interior_nn | 25 | 4323.50 | 12.67 | 3182575616 | 0.00 | 0.00 | 0.00 | 0.00 | 736.11 | true |
maxwell_scudnn_winograd_128x128_ldg1_ldg4_tile148n_nt | 16 | 817.34 | 2.40 | 3326392320 | 0.00 | 0.00 | 0.00 | 0.00 | 4069.80 | true |
void cudnn::detail::explicit_convolve_sgemm<float, int, 1024, 5, 5, 3, 3, 3, 0, true>(int, int, int, float const*, int, float const*, int, float*, kernel_conv_params, int, int, float, float, int, float*, float*) | 36 | 4302.67 | 12.61 | 7767065920 | 0.00 | 0.00 | 0.00 | 0.00 | 1805.17 | true |
void cudnn::detail::explicit_convolve_sgemm<float, int, 128, 5, 5, 3, 3, 3, 0, true>(int, int, int, float const*, int, float const*, int, float*, kernel_conv_params, int, int, float, float, int, float*, float*) | 45 | 5410.33 | 15.86 | 8114756576 | 0.00 | 0.00 | 0.00 | 0.00 | 1499.86 | true |
void cudnn::detail::implicit_convolve_sgemm<float, float, 1024, 5, 5, 3, 3, 3, 1, true, false, true>(int, int, int, float const*, int, float*, float*, kernel_conv_params, int, float, float, int, float*, float*, int, int) | 9 | 1631.17 | 4.78 | 738505600 | 0.00 | 0.00 | 0.00 | 0.00 | 452.75 | true |
void cudnn::detail::implicit_convolve_sgemm<float, float, 128, 5, 5, 3, 3, 3, 1, true, false, true>(int, int, int, float const*, int, float*, float*, kernel_conv_params, int, float, float, int, float*, float*, int, int) | 2 | 553.83 | 1.62 | 113295360 | 0.00 | 0.00 | 0.00 | 0.00 | 204.57 | true |
void cudnn::detail::pooling_fw_4d_kernel<float, float, cudnn::detail::averpooling_func<float>, 2, false>(cudnnTensorStruct, float const*, cudnnTensorStruct, float*, cudnnPoolingStruct, float, float, int, cudnn::reduced_divisor, cudnn::reduced_divisor) | 14 | 535.00 | 1.57 | 91524913 | 0.00 | 0.00 | 0.00 | 0.00 | 171.07 | true |
void cudnn::detail::pooling_fw_4d_kernel<float, float, cudnn::detail::maxpooling_func<float, (cudnnNanPropagation_t)0>, 0, false>(cudnnTensorStruct, float const*, cudnnTensorStruct, float*, cudnnPoolingStruct, float, float, int, cudnn::reduced_divisor, cudnn::reduced_divisor) | 3 | 73.00 | 0.21 | 752768 | 0.00 | 0.00 | 0.00 | 0.00 | 10.31 | true |
void cudnn::winograd::generateWinogradTilesKernel<0, float, float>(cudnn::winograd::GenerateWinogradTilesParams<float, float>) | 16 | 79.17 | 0.23 | 8374272 | 0.00 | 0.00 | 0.00 | 0.00 | 105.78 | true |
void Eigen::internal::EigenMetaKernel<Eigen::TensorEvaluator<Eigen::TensorAssignOp<Eigen::TensorMap<Eigen::Tensor<float, 1, 1, long>, 16, Eigen::MakePointer>, Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_max_op<float const, float const>, Eigen::TensorMap<Eigen::Tensor<float const, 1, 1, long>, 16, Eigen::MakePointer> const, Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float const>, Eigen::TensorMap<Eigen::Tensor<float const, 1, 1, long>, 16, Eigen::MakePointer> const> const> const> const, Eigen::GpuDevice>, long>(Eigen::TensorEvaluator<Eigen::TensorAssignOp<Eigen::TensorMap<Eigen::Tensor<float, 1, 1, long>, 16, Eigen::MakePointer>, Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_max_op<float const, float const>, Eigen::TensorMap<Eigen::Tensor<float const, 1, 1, long>, 16, Eigen::MakePointer> const, Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float const>, Eigen::TensorMap<Eigen::Tensor<float const, 1, 1, long>, 16, Eigen::MakePointer> const> const> const> const, Eigen::GpuDevice>, long) | 99 | 373.33 | 1.09 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void Eigen::internal::EigenMetaKernel<Eigen::TensorEvaluator<Eigen::TensorAssignOp<Eigen::TensorMap<Eigen::Tensor<float, 2, 1, int>, 16, Eigen::MakePointer>, Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_sum_op<float, float>, Eigen::TensorMap<Eigen::Tensor<float const, 2, 1, int>, 16, Eigen::MakePointer> const, Eigen::TensorBroadcastingOp<Eigen::array<long, 2ul> const, Eigen::TensorMap<Eigen::Tensor<float const, 2, 1, int>, 16, Eigen::MakePointer> const> const> const> const, Eigen::GpuDevice>, int>(Eigen::TensorEvaluator<Eigen::TensorAssignOp<Eigen::TensorMap<Eigen::Tensor<float, 2, 1, int>, 16, Eigen::MakePointer>, Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_sum_op<float, float>, Eigen::TensorMap<Eigen::Tensor<float const, 2, 1, int>, 16, Eigen::MakePointer> const, Eigen::TensorBroadcastingOp<Eigen::array<long, 2ul> const, Eigen::TensorMap<Eigen::Tensor<float const, 2, 1, int>, 16, Eigen::MakePointer> const> const> const> const, Eigen::GpuDevice>, int) | 148 | 701.00 | 2.05 | 15089184 | 0.00 | 0.00 | 0.00 | 0.00 | 21.53 | true |
void gemv2N_kernel<int, int, float, float, float, 128, 8, 4, 4, 1, cublasGemvParams<cublasGemvTensor<float const>, cublasGemvTensor<float>, float> >(cublasGemvParams<cublasGemvTensor<float const>, cublasGemvTensor<float>, float>) | 0 | 24.17 | 0.07 | 3202871 | 0.00 | 0.00 | 0.00 | 0.00 | 132.53 | true |
void im2col4d_kernel<float, int>(im2col4d_params, cudnnConvolutionStruct, cudnnTensor4dStruct, float const*, float*, int) | 82 | 8924.00 | 26.15 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void tensorflow::(anonymous namespace)::GenerateNormalizedProb<float, float>(float const*, float const*, float const*, float*, int, int, bool) | 0 | 3.67 | 0.01 | 24024 | 0.00 | 0.00 | 0.00 | 0.00 | 6.55 | true |
void tensorflow::BiasNHWCKernel<float>(int, float const*, float const*, float*, int) | 0 | 4.00 | 0.01 | 1001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | true |
void tensorflow::functor::BlockReduceKernel<int*, int*, 256, tensorflow::functor::Prod<int> >(int*, int*, int, tensorflow::functor::Prod<int>, std::iterator_traits<int*>::value_type) | 0 | 3.83 | 0.01 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void tensorflow::functor::RowReduceKernel<cub::TransformInputIterator<float, tensorflow::(anonymous namespace)::SubtractAndExpFunctor<float, float>, cub::CountingInputIterator<int, long>, long>, float*, cub::Sum>(cub::TransformInputIterator<float, tensorflow::(anonymous namespace)::SubtractAndExpFunctor<float, float>, cub::CountingInputIterator<int, long>, long>, float*, int, int, cub::Sum, std::iterator_traits<cub::TransformInputIterator<float, tensorflow::(anonymous namespace)::SubtractAndExpFunctor<float, float>, cub::CountingInputIterator<int, long>, long> >::value_type) | 0 | 11.33 | 0.03 | 10431 | 0.00 | 0.00 | 0.00 | 0.00 | 0.92 | true |
void tensorflow::functor::RowReduceKernel<float const*, float*, cub::Max>(float const*, float*, int, int, cub::Max, std::iterator_traits<float const*>::value_type) | 0 | 5.17 | 0.02 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void tensorflow::functor::ShuffleInTensor3Simple<float, 2, 1, 0, false>(int, float const*, tensorflow::functor::Dimension<3>, float*) | 148 | 2296.84 | 6.73 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void tensorflow::functor::SwapDimension1And2InTensor3UsingTiles<unsigned int, 1024, 1024, 2, false>(unsigned int const*, tensorflow::functor::Dimension<3>, unsigned int*) | 0 | 17.83 | 0.05 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
Showing 1 to 22 of 22 entries