GPU Kernel Information Aggregated by Name
kernel_name | kernel_count | kernel_duration (us) | model_duration_percentage | kernel_flops | kernel_dram_read_bytes | kernel_dram_write_bytes | kernel_achieved_occupancy (%) | kernel_arithmetic_intensity (flops/byte) | kernel_arithmetic_throughput (GFlops) | kernel_memory_bound |
---|
kernel_name | kernel_count | kernel_duration (us) | model_duration_percentage | kernel_flops | kernel_dram_read_bytes | kernel_dram_write_bytes | kernel_achieved_occupancy (%) | kernel_arithmetic_intensity (flops/byte) | kernel_arithmetic_throughput (GFlops) | kernel_memory_bound |
---|---|---|---|---|---|---|---|---|---|---|
cudnn::maxwell::gemm::computeOffsetsKernel(cudnn::maxwell::gemm::ComputeOffsetsParams) | 26 | 60.67 | 0.69 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
maxwell_scudnn_128x128_relu_interior_nn | 1 | 160.50 | 1.83 | 117899264 | 0.00 | 0.00 | 0.00 | 0.00 | 734.57 | true |
maxwell_scudnn_128x32_relu_interior_nn | 10 | 829.00 | 9.45 | 142303232 | 0.00 | 0.00 | 0.00 | 0.00 | 171.66 | true |
maxwell_scudnn_128x32_relu_small_nn | 0 | 35.33 | 0.40 | 8314880 | 0.00 | 0.00 | 0.00 | 0.00 | 235.33 | true |
maxwell_scudnn_128x64_relu_interior_nn | 12 | 1432.17 | 16.33 | 426459136 | 0.00 | 0.00 | 0.00 | 0.00 | 297.77 | true |
maxwell_scudnn_winograd_128x128_ldg1_ldg4_tile148n_nt | 17 | 614.17 | 7.00 | 1253588992 | 0.00 | 0.00 | 0.00 | 0.00 | 2041.12 | true |
void cudnn::detail::explicit_convolve_sgemm<float, int, 1024, 5, 5, 3, 3, 3, 0, true>(int, int, int, float const*, int, float const*, int, float*, kernel_conv_params, int, int, float, float, int, float*, float*) | 0 | 60.67 | 0.69 | 244858880 | 0.00 | 0.00 | 0.00 | 0.00 | 4036.11 | true |
void cudnn::detail::explicit_convolve_sgemm<float, int, 128, 5, 5, 3, 3, 3, 0, true>(int, int, int, float const*, int, float const*, int, float*, kernel_conv_params, int, int, float, float, int, float*, float*) | 0 | 56.00 | 0.64 | 40913280 | 0.00 | 0.00 | 0.00 | 0.00 | 730.59 | true |
void cudnn::detail::implicit_convolve_sgemm<float, float, 1024, 5, 5, 3, 3, 3, 1, true, false, true>(int, int, int, float const*, int, float*, float*, kernel_conv_params, int, float, float, int, float*, float*, int, int) | 3 | 325.50 | 3.71 | 92864048 | 0.00 | 0.00 | 0.00 | 0.00 | 285.30 | true |
void cudnn::detail::implicit_convolve_sgemm<float, float, 128, 5, 5, 3, 3, 3, 1, true, false, true>(int, int, int, float const*, int, float*, float*, kernel_conv_params, int, float, float, int, float*, float*, int, int) | 6 | 790.67 | 9.02 | 244057705 | 0.00 | 0.00 | 0.00 | 0.00 | 308.67 | true |
void cudnn::detail::pooling_fw_4d_kernel<float, float, cudnn::detail::averpooling_func<float>, 2, false>(cudnnTensorStruct, float const*, cudnnTensorStruct, float*, cudnnPoolingStruct, float, float, int, cudnn::reduced_divisor, cudnn::reduced_divisor) | 0 | 15.00 | 0.17 | 72194 | 0.00 | 0.00 | 0.00 | 0.00 | 4.81 | true |
void cudnn::detail::pooling_fw_4d_kernel<float, float, cudnn::detail::maxpooling_func<float, (cudnnNanPropagation_t)0>, 0, false>(cudnnTensorStruct, float const*, cudnnTensorStruct, float*, cudnnPoolingStruct, float, float, int, cudnn::reduced_divisor, cudnn::reduced_divisor) | 12 | 155.17 | 1.77 | 1417472 | 0.00 | 0.00 | 0.00 | 0.00 | 9.14 | true |
void cudnn::winograd::generateWinogradTilesKernel<0, float, float>(cudnn::winograd::GenerateWinogradTilesParams<float, float>) | 17 | 121.33 | 1.38 | 21440512 | 0.00 | 0.00 | 0.00 | 0.00 | 176.71 | true |
void Eigen::internal::EigenMetaKernel<Eigen::TensorEvaluator<Eigen::TensorAssignOp<Eigen::TensorMap<Eigen::Tensor<float, 1, 1, long>, 16, Eigen::MakePointer>, Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_max_op<float const, float const>, Eigen::TensorMap<Eigen::Tensor<float const, 1, 1, long>, 16, Eigen::MakePointer> const, Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float const>, Eigen::TensorMap<Eigen::Tensor<float const, 1, 1, long>, 16, Eigen::MakePointer> const> const> const> const, Eigen::GpuDevice>, long>(Eigen::TensorEvaluator<Eigen::TensorAssignOp<Eigen::TensorMap<Eigen::Tensor<float, 1, 1, long>, 16, Eigen::MakePointer>, Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_max_op<float const, float const>, Eigen::TensorMap<Eigen::Tensor<float const, 1, 1, long>, 16, Eigen::MakePointer> const, Eigen::TensorCwiseNullaryOp<Eigen::internal::scalar_constant_op<float const>, Eigen::TensorMap<Eigen::Tensor<float const, 1, 1, long>, 16, Eigen::MakePointer> const> const> const> const, Eigen::GpuDevice>, long) | 29 | 102.00 | 1.16 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void Eigen::internal::EigenMetaKernel<Eigen::TensorEvaluator<Eigen::TensorAssignOp<Eigen::TensorMap<Eigen::Tensor<float, 2, 1, int>, 16, Eigen::MakePointer>, Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_sum_op<float, float>, Eigen::TensorMap<Eigen::Tensor<float const, 2, 1, int>, 16, Eigen::MakePointer> const, Eigen::TensorBroadcastingOp<Eigen::array<long, 2ul> const, Eigen::TensorMap<Eigen::Tensor<float const, 2, 1, int>, 16, Eigen::MakePointer> const> const> const> const, Eigen::GpuDevice>, int>(Eigen::TensorEvaluator<Eigen::TensorAssignOp<Eigen::TensorMap<Eigen::Tensor<float, 2, 1, int>, 16, Eigen::MakePointer>, Eigen::TensorCwiseBinaryOp<Eigen::internal::scalar_sum_op<float, float>, Eigen::TensorMap<Eigen::Tensor<float const, 2, 1, int>, 16, Eigen::MakePointer> const, Eigen::TensorBroadcastingOp<Eigen::array<long, 2ul> const, Eigen::TensorMap<Eigen::Tensor<float const, 2, 1, int>, 16, Eigen::MakePointer> const> const> const> const, Eigen::GpuDevice>, int) | 56 | 251.33 | 2.87 | 3226160 | 0.00 | 0.00 | 0.00 | 0.00 | 12.84 | true |
void im2col4d_kernel<float, int>(im2col4d_params, cudnnConvolutionStruct, cudnnTensor4dStruct, float const*, float*, int) | 1 | 145.50 | 1.66 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void tensorflow::(anonymous namespace)::GenerateNormalizedProb<float, float>(float const*, float const*, float const*, float*, int, int, bool) | 0 | 3.00 | 0.03 | 24024 | 0.00 | 0.00 | 0.00 | 0.00 | 8.01 | true |
void tensorflow::BiasNCHWKernel<float>(int, float const*, float const*, float*, int, int) | 0 | 4.00 | 0.05 | 1001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | true |
void tensorflow::functor::PadInputCustomKernelNCHW<float, 4>(int, float const*, tensorflow::functor::Dimension<4>, float*, tensorflow::functor::Dimension<4>, tensorflow::functor::Dimension<(4)-(2)>) | 0 | 10.00 | 0.11 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void tensorflow::functor::RowReduceKernel<cub::TransformInputIterator<float, tensorflow::(anonymous namespace)::SubtractAndExpFunctor<float, float>, cub::CountingInputIterator<int, long>, long>, float*, cub::Sum>(cub::TransformInputIterator<float, tensorflow::(anonymous namespace)::SubtractAndExpFunctor<float, float>, cub::CountingInputIterator<int, long>, long>, float*, int, int, cub::Sum, std::iterator_traits<cub::TransformInputIterator<float, tensorflow::(anonymous namespace)::SubtractAndExpFunctor<float, float>, cub::CountingInputIterator<int, long>, long> >::value_type) | 0 | 11.33 | 0.13 | 10431 | 0.00 | 0.00 | 0.00 | 0.00 | 0.92 | true |
void tensorflow::functor::RowReduceKernel<float const*, float*, cub::Max>(float const*, float*, int, int, cub::Max, std::iterator_traits<float const*>::value_type) | 0 | 6.00 | 0.07 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void tensorflow::functor::ShuffleInTensor3Simple<float, 2, 1, 0, false>(int, float const*, tensorflow::functor::Dimension<3>, float*) | 57 | 500.16 | 5.70 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void tensorflow::functor::SwapDimension1And2InTensor3UsingTiles<unsigned int, 1024, 1024, 2, false>(unsigned int const*, tensorflow::functor::Dimension<3>, unsigned int*) | 0 | 10.00 | 0.11 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
Showing 1 to 23 of 23 entries