GPU Kernel Information Aggregated by Name
kernel_name | kernel_count | kernel_duration (us) | model_duration_percentage | kernel_flops | kernel_dram_read_bytes | kernel_dram_write_bytes | kernel_achieved_occupancy (%) | kernel_arithmetic_intensity (flops/byte) | kernel_arithmetic_throughput (GFlops) | kernel_memory_bound |
---|
kernel_name | kernel_count | kernel_duration (us) | model_duration_percentage | kernel_flops | kernel_dram_read_bytes | kernel_dram_write_bytes | kernel_achieved_occupancy (%) | kernel_arithmetic_intensity (flops/byte) | kernel_arithmetic_throughput (GFlops) | kernel_memory_bound |
---|---|---|---|---|---|---|---|---|---|---|
cudnn::maxwell::gemm::computeOffsetsKernel(cudnn::maxwell::gemm::ComputeOffsetsParams) | 18 | 46.00 | 0.09 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
maxwell_scudnn_128x128_relu_interior_nn | 17 | 1541.33 | 2.86 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
maxwell_scudnn_128x64_relu_medium_nn | 0 | 62.00 | 0.11 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
maxwell_scudnn_winograd_128x128_ldg1_ldg4_tile148n_nt | 767 | 9472.00 | 17.56 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
maxwell_scudnn_winograd_128x128_ldg1_ldg4_tile148t_nt | 191 | 1920.00 | 3.56 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void cudnn::detail::bn_fw_inf_1C11_kernel_NCHW<float, float, true, 1>(float, float, cudnnTensorStruct, float const*, cudnnTensorStruct, float*, cudnnTensorStruct, float const*, float const*, float const*, float const*, float) | 103 | 659.00 | 1.22 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void cudnn::detail::explicit_convolve_sgemm<float, int, 1024, 5, 5, 3, 3, 3, 0, true>(int, int, int, float const*, int, float const*, int, float*, kernel_conv_params, int, int, float, float, int, float*, float*) | 33 | 706.00 | 1.31 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void cudnn::detail::explicit_convolve_sgemm<float, int, 128, 5, 5, 3, 3, 3, 0, true>(int, int, int, float const*, int, float const*, int, float*, kernel_conv_params, int, int, float, float, int, float*, float*) | 66 | 1777.03 | 3.29 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void cudnn::detail::implicit_convolve_sgemm<float, float, 1024, 5, 5, 3, 3, 3, 1, true, false, true>(int, int, int, float const*, int, float*, float*, kernel_conv_params, int, float, float, int, float*, float*, int, int) | 46 | 5782.00 | 10.72 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void cudnn::detail::pooling_fw_4d_kernel<float, float, cudnn::detail::averpooling_func<float>, 1, false>(cudnnTensorStruct, float const*, cudnnTensorStruct, float*, cudnnPoolingStruct, float, float, int, cudnn::reduced_divisor, cudnn::reduced_divisor) | 0 | 13.00 | 0.02 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void cudnn::detail::pooling_fw_4d_kernel<float, float, cudnn::detail::maxpooling_func<float, (cudnnNanPropagation_t)0>, 0, false>(cudnnTensorStruct, float const*, cudnnTensorStruct, float*, cudnnPoolingStruct, float, float, int, cudnn::reduced_divisor, cudnn::reduced_divisor) | 0 | 19.00 | 0.04 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void cudnn::winograd::generateWinogradTilesKernel<0, float, float>(cudnn::winograd::GenerateWinogradTilesParams<float, float>) | 959 | 3840.00 | 7.12 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void gemv2T_kernel_val<int, int, float, float, float, 128, 16, 2, 2, false, cublasGemvParams<cublasGemvTensor<float const>, cublasGemvTensor<float>, float> >(cublasGemvParams<cublasGemvTensor<float const>, cublasGemvTensor<float>, float>, float, float) | 0 | 27.00 | 0.05 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void im2col4d_kernel<float, int>(im2col4d_params, cudnnConvolutionStruct, cudnnTensor4dStruct, float const*, float*, int) | 100 | 4210.02 | 7.80 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void mshadow::cuda::MapPlanKernel<mshadow::sv::plusto, 8, mshadow::expr::Plan<mshadow::Tensor<mshadow::gpu, 2, float>, float>, mshadow::expr::Plan<mshadow::expr::Broadcast1DExp<mshadow::Tensor<mshadow::gpu, 1, float>, float, 2, 1>, float> >(mshadow::expr::Plan<mshadow::Tensor<mshadow::gpu, 2, float>, float>, int, mshadow::Shape<2>, mshadow::expr::Plan<mshadow::expr::Broadcast1DExp<mshadow::Tensor<mshadow::gpu, 1, float>, float, 2, 1>, float>) | 0 | 3.00 | 0.01 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void mxnet::op::mxnet_op::mxnet_generic_kernel<mxnet::op::AddReluKernel, float*, float*, float*, mxnet::OpReqType>(int, float*, float*, float*, mxnet::OpReqType) | 32 | 217.33 | 0.40 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
void op_generic_tensor_kernel<2, float, float, float, 256, (cudnnGenericOp_t)8, (cudnnNanPropagation_t)0, (cudnnDimOrder_t)0, 1>(cudnnTensorStruct, float*, cudnnTensorStruct, float const*, cudnnTensorStruct, float const*, float, float, float, float, dimArray, reducedDivisorArray, bool) | 66 | 299.67 | 0.56 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | true |
Showing 1 to 17 of 17 entries